हिंदी

If Y = ( Sin X − Cos X ) Sin X − Cos X , π 4 < X < 3 π 4 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?

उत्तर

\[\text{ We have, y } = \left( \sin x - \cos x \right)^\left( \sin x - \cos x \right) \]   ...(i)

Taking log on both sides,

\[\log y = \log \left( \sin x - \cos x  \right)^\left( \sin x - \cos x \right) \]
\[ \Rightarrow \log y = \left( \sin x - \cos x \right) \log\left( \sin x - \cos x \right)\]

\[\Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left( \sin x - \cos x \right)\frac{d}{dx}\left( \sin x - \cos x \right) + \left( \sin x - \cos x \right)\frac{d}{dx}\log\left( \sin x - \cos x \right) \left[\text{ using product rule } \right]\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left( \sin x - \cos x \right)\left( \cos x + \sin x \right) + \frac{\left( \sin x - \cos x \right)}{\left( \sin x - \cos x \right)}\frac{d}{dx}\left( \sin x - \cos x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left( \cos x + \sin x \right) \log\left( \sin x - \cos x \right) + \left( \cos x + \sin x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left( \cos x + \sin x \right)\left[ 1 + \log\left( \sin x - \cos x \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \left( \cos x + \sin x \right)\left\{ 1 + \log\left( \sin x  - \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \sin x - \cos x \right)^\left( \sin x - \cos x \right) \left[ \left( \cos x + \sin x \right)\left\{ 1 + \log\left( \sin x - \cos x \right) \right\} \right] \left[ \text{ using equation } \left( i \right) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 53 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate log7 (2x − 3) ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate x2 with respect to x3


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function tan−1 x ?


Find the second order derivatives of the following function x cos x ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×