Advertisements
Advertisements
Question
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Solution
\[\text{ We have, y } = \left( \sin x - \cos x \right)^\left( \sin x - \cos x \right) \] ...(i)
Taking log on both sides,
\[\log y = \log \left( \sin x - \cos x \right)^\left( \sin x - \cos x \right) \]
\[ \Rightarrow \log y = \left( \sin x - \cos x \right) \log\left( \sin x - \cos x \right)\]
\[\Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left( \sin x - \cos x \right)\frac{d}{dx}\left( \sin x - \cos x \right) + \left( \sin x - \cos x \right)\frac{d}{dx}\log\left( \sin x - \cos x \right) \left[\text{ using product rule } \right]\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left( \sin x - \cos x \right)\left( \cos x + \sin x \right) + \frac{\left( \sin x - \cos x \right)}{\left( \sin x - \cos x \right)}\frac{d}{dx}\left( \sin x - \cos x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left( \cos x + \sin x \right) \log\left( \sin x - \cos x \right) + \left( \cos x + \sin x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left( \cos x + \sin x \right)\left[ 1 + \log\left( \sin x - \cos x \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \left( \cos x + \sin x \right)\left\{ 1 + \log\left( \sin x - \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \sin x - \cos x \right)^\left( \sin x - \cos x \right) \left[ \left( \cos x + \sin x \right)\left\{ 1 + \log\left( \sin x - \cos x \right) \right\} \right] \left[ \text{ using equation } \left( i \right) \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate etan x ?
Differentiate logx 3 ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If y = etan x, then (cos2 x)y2 =
Find the minimum value of (ax + by), where xy = c2.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.