हिंदी

Sin − 1 √ 1 − X 2 with Respect to Cot − 1 ( X √ 1 − X 2 ) , If 0 < X < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 

योग

उत्तर

\[\text { Let, u }= \sin^{- 1} \left( \sqrt{1 - x^2} \right)\]

\[\text {Put x } = \cos\theta\]

\[ \Rightarrow \theta = \cos^{- 1} x\]

\[\text{We get, }u = \sin^{- 1} \left( \sin\theta \right) ...... \left( i \right)\]

\[\text {  Let, v } = co t^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow v = co t^{- 1} \left( \frac{\cos\theta}{\sqrt{1 - \cos^2 \theta}} \right) \]

\[ \Rightarrow v = co t^{- 1} \left( \frac{\cos\theta}{\sin\theta} \right)\]

\[ \Rightarrow v = co t^{- 1} \left( cot\theta \right) . . . \left( ii \right)\]

\[\text { Here }, \]

\[ 0 < x < 1\]

\[ \Rightarrow 0 < \cos\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[\text { So, from equation} \left( i \right), \]

\[u = \theta \left[ \text { Since,} \sin^{- 1} \left( \sin\theta \right) = \theta, \text { if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow u = \cos^{- 1} x\]

Differentiating it with respect to x,

\[\frac{du}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iii \right)\]

\[\text { From equation } \left( ii \right), \]

\[v = \theta \left[ \text {Since}, co t^{- 1} \left( cot\theta \right) = \theta, \text { if }\theta \in \left( 0, \pi \right) \right]\]

\[ \Rightarrow v = \cos^{- 1} x\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]

\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( \frac{\sqrt{1 - x^2}}{- 1} \right)\]

\[ \therefore \frac{du}{dv} = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.08 [पृष्ठ ११३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.08 | Q 18 | पृष्ठ ११३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate sin2 (2x + 1) ?


Differentiate logx 3 ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


Differentiate \[\left( \log x \right)^x\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function  log (log x)  ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If y = etan x, then (cos2 x)y2 =


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×