हिंदी

If Y √ X 2 + 1 = Log ( √ X 2 + 1 − X ) ,Show that ( X 2 + 1 ) D Y D X + X Y + 1 = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?

उत्तर

\[\text{ We have, y} \sqrt{x^2 + 1} = \log\left( \sqrt{x^2 + 1} - x \right)\] 

Differentiating with respect to x, we get,

\[\Rightarrow \frac{d}{dx}\left( y\sqrt{x^2 + 1} \right) = \frac{d}{dx}\log\left( \sqrt{x^2 + 1} - x \right) \left[ \text{ using product rule and chain rule } \right]\]

\[ \Rightarrow y\frac{d}{dx}\left( \sqrt{x^2 + 1} \right) + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)} \times \frac{d}{dx}\left( \sqrt{x^2 + 1} - x \right)\]

\[ \Rightarrow \frac{y}{2\sqrt{x^2 + 1}} \times \frac{d}{dx}\left( x^2 + 1 \right) + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)} \times \left[ \frac{1}{2\sqrt{x^2 + 1}}\frac{d}{dx}\left( x^2 + 1 \right) - 1 \right]\]

\[ \Rightarrow \frac{2xy}{2\sqrt{x^2 + 1}} + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)}\left[ \frac{2x}{2\sqrt{x^2 + 1}} - 1 \right]\]

\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \left[ \frac{1}{\sqrt{x^2 + 1} - x} \right]\left[ \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right] - \frac{xy}{\sqrt{x^2 + 1}}\]

\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{- 1}{\sqrt{x^2 + 1}} - \frac{xy}{\sqrt{x^2 + 1}}\]

\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{- \left( 1 + xy \right)}{\sqrt{x^2 + 1}}\]

\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} = - \left( 1 + xy \right)\]

\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} + 1 + xy = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 24 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles e3x.


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate sin (3x + 5) ?


Differentiate sin (log x) ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×