Advertisements
Advertisements
प्रश्न
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
उत्तर
\[\text{ We have, y} \sqrt{x^2 + 1} = \log\left( \sqrt{x^2 + 1} - x \right)\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left( y\sqrt{x^2 + 1} \right) = \frac{d}{dx}\log\left( \sqrt{x^2 + 1} - x \right) \left[ \text{ using product rule and chain rule } \right]\]
\[ \Rightarrow y\frac{d}{dx}\left( \sqrt{x^2 + 1} \right) + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)} \times \frac{d}{dx}\left( \sqrt{x^2 + 1} - x \right)\]
\[ \Rightarrow \frac{y}{2\sqrt{x^2 + 1}} \times \frac{d}{dx}\left( x^2 + 1 \right) + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)} \times \left[ \frac{1}{2\sqrt{x^2 + 1}}\frac{d}{dx}\left( x^2 + 1 \right) - 1 \right]\]
\[ \Rightarrow \frac{2xy}{2\sqrt{x^2 + 1}} + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)}\left[ \frac{2x}{2\sqrt{x^2 + 1}} - 1 \right]\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \left[ \frac{1}{\sqrt{x^2 + 1} - x} \right]\left[ \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right] - \frac{xy}{\sqrt{x^2 + 1}}\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{- 1}{\sqrt{x^2 + 1}} - \frac{xy}{\sqrt{x^2 + 1}}\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{- \left( 1 + xy \right)}{\sqrt{x^2 + 1}}\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} = - \left( 1 + xy \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} + 1 + xy = 0\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles log cosec x ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
Find the minimum value of (ax + by), where xy = c2.
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.