हिंदी

If Sin ( X Y ) + Y X = X 2 − Y 2 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?

योग

उत्तर

\[\text{ We have, }\sin\left( xy \right) + \frac{y}{x} = x^2 - y^2\]

Differentiating with respect to x, we get,

\[\Rightarrow \frac{d}{dx}\left( \sin xy \right) + \frac{d}{dx}\left( \frac{y}{x} \right) = \frac{d}{dx}\left( x^2 \right) - \frac{d}{dx}\left( y^2 \right)\]

\[ \Rightarrow \cos\left( xy \right)\frac{d}{dx}\left( xy \right) + \left\{ \frac{x\frac{dy}{dx} - y\frac{d}{dx}\left( x \right)}{x^2} \right\} = 2x - 2y\frac{dy}{dx} \]

\[ \Rightarrow \cos\left( xy \right)\left\{ x\frac{dy}{dx} + y\frac{d}{dx}\left( x \right) \right\} + \left\{ \frac{x\frac{dy}{dx} - y\left( 1 \right)}{x^2} \right\} = 2x - 2y\frac{dy}{dx}\]

\[ \Rightarrow \cos\left( xy \right)\left\{ x\frac{dy}{dx} + y\left( 1 \right) \right\} + \frac{1}{x^2}\left( x\frac{dy}{dx} - y \right) = 2x - 2y\frac{dy}{dx}\]

\[ \Rightarrow x \cos\left( xy \right)\frac{dy}{dx} + y \cos\left( xy \right) + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 2x - 2y\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx}\left\{ x \cos\left( xy \right) + \frac{1}{x} + 2y \right\} = \frac{y}{x^2} - y \cos\left( xy \right) + 2x\]

\[ \Rightarrow \frac{dy}{dx}\left\{ \frac{x^2 \cos\left( xy \right) + 1 + 2xy}{x} \right\} = \frac{1}{x^2}\left( y - x^2 y \cos\left( xy \right) + 2 x^3 \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^3 + y - x^2 y \cos\left( xy \right)}{x\left( x^2 \cos\left( xy \right) + 1 + 2xy \right)}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 25 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that `y=(4sintheta)/(2+costheta)-theta `


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles log cosec x ?


Differentiate tan (x° + 45°) ?


Differentiate \[e^{\tan 3 x} \] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( \log x \right)^x\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If y = etan x, then (cos2 x)y2 =


Differentiate sin(log sin x) ?


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×