Advertisements
Advertisements
प्रश्न
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
उत्तर
\[\text{ We have, }\sin\left( xy \right) + \frac{y}{x} = x^2 - y^2\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left( \sin xy \right) + \frac{d}{dx}\left( \frac{y}{x} \right) = \frac{d}{dx}\left( x^2 \right) - \frac{d}{dx}\left( y^2 \right)\]
\[ \Rightarrow \cos\left( xy \right)\frac{d}{dx}\left( xy \right) + \left\{ \frac{x\frac{dy}{dx} - y\frac{d}{dx}\left( x \right)}{x^2} \right\} = 2x - 2y\frac{dy}{dx} \]
\[ \Rightarrow \cos\left( xy \right)\left\{ x\frac{dy}{dx} + y\frac{d}{dx}\left( x \right) \right\} + \left\{ \frac{x\frac{dy}{dx} - y\left( 1 \right)}{x^2} \right\} = 2x - 2y\frac{dy}{dx}\]
\[ \Rightarrow \cos\left( xy \right)\left\{ x\frac{dy}{dx} + y\left( 1 \right) \right\} + \frac{1}{x^2}\left( x\frac{dy}{dx} - y \right) = 2x - 2y\frac{dy}{dx}\]
\[ \Rightarrow x \cos\left( xy \right)\frac{dy}{dx} + y \cos\left( xy \right) + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 2x - 2y\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left\{ x \cos\left( xy \right) + \frac{1}{x} + 2y \right\} = \frac{y}{x^2} - y \cos\left( xy \right) + 2x\]
\[ \Rightarrow \frac{dy}{dx}\left\{ \frac{x^2 \cos\left( xy \right) + 1 + 2xy}{x} \right\} = \frac{1}{x^2}\left( y - x^2 y \cos\left( xy \right) + 2 x^3 \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^3 + y - x^2 y \cos\left( xy \right)}{x\left( x^2 \cos\left( xy \right) + 1 + 2xy \right)}\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles log cosec x ?
Differentiate tan (x° + 45°) ?
Differentiate \[e^{\tan 3 x} \] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = etan x, then (cos2 x)y2 =
Differentiate sin(log sin x) ?
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.