हिंदी

Differentiate X X 2 − 3 + ( X − 3 ) X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?

उत्तर

\[\text{  Let y } = x^{x^2 - 3} + \left( x - 3 \right)^{x^2} \]

\[ \text{ Also, let u } = x^{x^2 - 3} \text{ and }v = \left( x - 3 \right)^{x^2} \]

\[ \therefore y = u + v\]

Differentiate  both sides with respect to x,

\[\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]

\[\text{ Now, u }= x^{x^2 - 3} \]

\[ \therefore \log u = \log\left( x^{x^2 - 3} \right)\]

\[ \Rightarrow \log u = \left( x^2 - 3 \right) \log x\]

Differentiating with respect to x,

\[\frac{1}{u}\frac{du}{dx} = \log x\frac{d}{dx}\left( x^2 - 3 \right) + \left( x^2 - 3 \right)\frac{d}{dx}\left( \log x \right)\]

\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \log x\left( 2x \right) + \left( x^2 - 3 \right)\left( \frac{1}{x} \right)\]

\[ \Rightarrow \frac{du}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right]\]

\[\text{ Also, v }= \left( x - 3 \right)^{x^2} \]

\[ \therefore \log v = \log \left( x - 3 \right)^{x^2} \]

\[ \Rightarrow \log v = x^2 \log\left( x - 3 \right)\]

Differentiating both sides with respect to x,

\[\frac{1}{v}\frac{dv}{dx} = \log\left( x - 3 \right)\frac{d}{dx}\left( x^2 \right) + x^2 \frac{d}{dx}\left[ \log\left( x - 3 \right) \right]\]

\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \log\left( x - 3 \right) \left( 2x \right) + x^2 \left( \frac{1}{x - 3} \right)\frac{d}{dx}\left( x - 3 \right)\]

\[ \Rightarrow \frac{dv}{dx} = v\left[ 2x \log\left( x - 3 \right) + \frac{x^2}{x - 3} \times 1 \right]\]

\[ \Rightarrow \frac{dv}{dx} = \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x\log\left( x - 3 \right) \right]\]

\[\text{ Substituing the expressions of }\frac{du}{dx}and \frac{dv}{dx}in equation \left( i \right)\]

\[\frac{dy}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right] + \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x \log\left( x - 3 \right) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 18.8 | पृष्ठ ८८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cosec x ?


Differentiate log7 (2x − 3) ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function  log (log x)  ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×