हिंदी

Prove that (y=4sinθ/2+cosθ)−θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `y=(4sintheta)/(2+costheta)-theta `

उत्तर

 `y=(4sintheta)/(2+costheta)-0`

 `dy/(d theta)=((2+costheta)(4costheta)+4sin^2theta)/(2+costheta)^2-1`

`=(8costheta+4cos^2theta+4sin^2theta)/(2costheta)^2-1`

`=(8costheta+4)/(2+costheta)^2-1`

 `=(4costheta-cos^2theta)/(2+costheta)^2`

`dy/(d theta)=(costheta(4-costheta))/(2+costheta)^2`

for increasing `dy/(d theta)>0, theta epsilon(0,pi/2)`

`0<= costheta<=1`

(2+cosθ)2 always greater than 0

So, `dy/(d theta) `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 N

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate sin2 (2x + 1) ?


Differentiate `2^(x^3)` ?


Differentiate \[3^{e^x}\] ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×