Advertisements
Advertisements
प्रश्न
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
उत्तर
\[x = a\sin2t\left( 1 + \cos2t \right) \text { and y} = b\cos2t\left( 1 - \cos2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = 2a\cos2t\left( 1 + \cos2t \right) + 2a\sin2t\left( 1 - \cos2t \right) \text { and } \frac{dy}{dt} = - 2b\sin2t\left( 1 - \cos2t \right) + 2b\cos2t\left( 1 + \cos2t \right) \]
\[ \Rightarrow \frac{dx}{dt} = 2a\left( \cos2t + \cos^2 2t + \sin2t - \sin2t\cos2t \right) \text {and } \frac{dy}{dt} = 2b\left( - \sin2t + \sin2t\cos2t + \cos2t + \cos^2 2t \right)\]
\[ \therefore \frac{dy}{dt} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 2b\left( - \sin2t + \sin2t\cos2t + \cos2t + \cos^2 2t \right)}{2a\left( \cos2t + \cos^2 2t + \sin2t - \sin2t\cos2t \right)}\]
\[ \Rightarrow \left( \frac{dy}{dt} \right)_{t = \frac{\pi}{4}} = \frac{- 2b\left( - \sin\frac{\pi}{2} + \sin\frac{\pi}{2}\cos\frac{\pi}{2} + \cos\frac{\pi}{2} + \cos^2 \frac{\pi}{2} \right)}{2a\left( \cos\frac{\pi}{2} + \cos^2 \frac{\pi}{2} + \sin\frac{\pi}{2} - \sin\frac{\pi}{2}\cos\frac{\pi}{2} \right)} = \frac{b}{a}\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate sin2 (2x + 1) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
Differentiate `log [x+2+sqrt(x^2+4x+1)]`