Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Solution
\[\text{ Let y } = x^{\sin x } + \left( \sin x \right)^x \]
\[\text{ Also, let u } = x^{\sin x } \text{ and v } = \left( \sin x \right)^x \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u } = x^{\sin x} \]
\[\text{ Taking log on both sides}, \]
\[ \Rightarrow \log u = \log\left( x^{\sin x} \right)\]
\[ \Rightarrow \log u = \sin x \log x\]
\[\text{ Differentiating both sides with respect to x}, \]
\[\frac{1}{u}\frac{du}{dx} = \log x\frac{d}{dx}\left( \sin x \right) + \sin x\frac{d}{dx}\left( \log x \right) \]
\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + \sin x\frac{1}{x} \right]\]
\[ \Rightarrow \frac{du}{dx} = x^{\sin x} \left[ \cos x \log x + \frac{\sin x}{x} \right] . . . \left( ii \right)\]
\[\text{ Again, v } = \left( \sin x \right)^x \]
\[\text{ Taking log on both sides }, \]
\[ \Rightarrow \log v = \log \left( \sin x \right)^x \]
\[ \Rightarrow \log v = x \log\left( \sin x \right)\]
\[\text{ Differentiating both sides with respect to x }, \]
\[\frac{1}{v}\frac{dv}{dx} = \log\left( \sin x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \log\left( \sin x \right) + x\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^x \left[ \log \sin x + \frac{x}{\sin x}\cos x \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^x \left[ \log \sin x + x \cot x \right] . . \left( iii \right)\]
\[\text{ From }\left( i \right), \left( ii \right)\text{ and }\left( iii \right), \text{ we obtain }\]
\[\frac{dy}{dx} = x^{\sin x} \left( \cos x \log x + \frac{\sin x}{x} \right) + \left( \sin x \right)^x \left[ \log \sin x + x \cot x \right] \]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin2 (2x + 1) ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If y = etan x, then (cos2 x)y2 =
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?