Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Solution
\[\text{ We have }, y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x} \]
\[ \Rightarrow y = e^{\log \left( \tan x \right)^{\cot x }}+ e^{\log \left( \cot x \right)^{\tan x}} \]
\[ \Rightarrow y = e^{\cot\ x\ log\ tan\ x}+e^{\tan x \log\left( \cot x \right)} \]
Differentiating with respect to x using chain rule and product rule,
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\cot x \log\tan x} \right) + \frac{d}{dx}\left( e^{\tan x logcotx} \right)\]
\[ = e^{\cot x \log\tan x} \frac{d}{dx}\left( {}^{\cot x \log\tan x} \right) + e^{\tan\ x\ logcot x} \frac{d}{dx}\left( {}^{\tan\ x\ logcot\ x} \right)\]
\[ = e^{\log \left( \tan x \right)^{\cot x}}\left[ \cot x\frac{d}{dx}\left( \log \tan x \right) + \log \tan x\frac{d}{dx}\left( \cot x \right) \right] + e^{\log\left( \cot x \right)\tan x} \left[ \tan x\frac{d}{dx}\left( \log \cot x \right) + logcot x\frac{d}{dx}\left( \tan x \right) \right] \]
\[ = \left( \tan x \right)^{\cot x} \left[ \cot x \times \left( \frac{1}{\tan x} \right)\frac{d}{dx}\left( \tan x \right) + \log \tan x\left( - {cosec}^2 x \right) \right] + \left( \cot x \right)^{\tan x} \left[ \tan x \times \left( \frac{1}{\cot x} \right)\frac{d}{dx}\left( \cot x \right) + \log \cot x\left( \sec^2 x \right) \right]\]
\[ = \left( \tan x \right)^{\cot x} \left[ \left( \frac{{cosec}^2 x}{\sec^2 x} \right)\left( \sec^2 x \right) - {cosec}^2 x \log \tan x \right] + \left( \cot x \right)^{\tan x} \left[ \left( \frac{\sec^2 x}{{cosec}^2 x} \right)\left( - {cosec}^2 x \right) + \sec^2 x \log \cot x \right]\]
\[ = \left( \tan x \right)^{\cot x} \left[ {cosec}^2 x - {cosec}^2 x \log \tan x \right] + \left( cot x \right)^{\tan x} \left[ \sec^2 x \log \cot x - \sec^2 x \right]\]
\[ = \left( \tan x \right)^{\cot x} {cosec}^2 x\left[ 1 - \log \tan x \right] + \left( cot x \right)^{\tan x} \sec^2 x \left[ \log \cot x - 1 \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate sin2 (2x + 1) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate (log sin x)2 ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
Find the minimum value of (ax + by), where xy = c2.