Advertisements
Advertisements
Question
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Solution
\[\text{ Let } f\left( x \right) = e^\sqrt{2x} \]
\[ \Rightarrow f\left( x + h \right) = e^\sqrt{2\left( x + h \right)} \]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^{{}^\sqrt{2\left( x + h \right)}} - e^{{}^\sqrt{2x}}}{h}\]
\[ = \lim_{h \to 0} e^\sqrt{2x} \left[ \frac{e^\sqrt{2\left( x + h \right)} - \sqrt{2x} - 1}{h} \right]\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \left[ \frac{e^\sqrt{2\left( x + h \right)} - \sqrt{2x} - 1}{\sqrt{2\left( x + h \right)} - \sqrt{2x}} \right] \times \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h} \left[ \because \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \right]\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2\left( x + h \right)} - \sqrt{2x}}{h} \times \frac{\sqrt{2\left( x + h \right)} + \sqrt{2x}}{\sqrt{2\left( x + h \right)} + \sqrt{2x}} \] [Rationalising the numerator]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2\left( x + h \right) - 2x}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2x + 2h - 2x}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)} \]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2h}{h\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = e^\sqrt{2x} \lim_{h \to 0} \frac{2}{\left( \sqrt{2\left( x + h \right)} + \sqrt{2x} \right)}\]
\[ = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]
\[\text{ Hence }, \frac{d}{dx}\left( e^\sqrt{2x} \right) = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles log cosec x ?
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
Find the second order derivatives of the following function tan−1 x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
f(x) = 3x2 + 6x + 8, x ∈ R