Advertisements
Advertisements
Question
Differentiate the following functions from first principles log cosec x ?
Solution
\[\text{Let} f\left( x \right) = \text{log cosecx}\]
\[ \Rightarrow f\left( x + h \right) = \text{log cosec}\left( x + h \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\text{log cosec}\left( x + h \right) - \log cosecx}{h}\]
\[ = \lim_{h \to 0} \frac{\log\left\{ \frac{cosec\left( x + h \right)}{cosecx} \right\}}{h}\]
\[ = \lim_{h \to 0} \frac{\log\left\{ 1 + \left( \frac{\sin x}{\sin\left( x + h \right)} - 1 \right) \right\}}{h}\]
\[ = \lim_{h \to 0} \left\{ \frac{\log\left\{ 1 + \left( \frac{\sin x - \sin\left( x + h \right)}{\sin\left( x + h \right)} \right) \right\}}{\left\{ \frac{\sin x - \sin\left( x + h \right)}{\sin\left( x + h \right)} \right\}} \right\}\frac{\left\{ \frac{\sin x - \sin\left( x + h \right)}{\sin\left( x + h \right)} \right\}}{h}\]
\[ = \lim_{h \to 0} \frac{2\cos\left( \frac{x + x + h}{2} \right)\sin\left( \frac{x - x - h}{2} \right)}{\sin\left( x + h \right)h} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 + x \right)}{x} = 1 and \sin A - \sin B = 2\cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = \lim_{h \to 0} \frac{2\cos\left( \frac{2x + h}{2} \right)}{\sin\left( x + h \right) \left( - 2 \right)}\left\{ \frac{\sin\left( - \frac{h}{2} \right)}{- \frac{h}{2}} \right\} \left[ \because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = - \cot x\]
\[ \therefore \frac{d}{dx}\left( \text{log cosec x} \right) = - \cot x\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate etan x ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[e^{\tan 3 x} \] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
f(x) = xx has a stationary point at ______.