Advertisements
Advertisements
Question
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
Solution
\[\text{ We have, }x^y + y^x = \left( x + y \right)^{x + y} \]
\[ \Rightarrow e^{ \log x^y} + e^{\log y^x } = e^{ \log \left( x + y \right)^\left( x + y \right) } \]
\[ \Rightarrow e^{y \log x} + e^{x \log y} = e^{ \left( x + y \right) \log\left( x + y \right) }\]
Differentiating with respect to x using chain rule and product rule,
\[\Rightarrow \frac{d}{dx}\left( e^{y \log x} \right) + \frac{d}{dx}\left( e^{x \log y} \right) = \frac{d}{dx} e^{\left( x + y \right)\log\left( x + y \right)} \]
\[ \Rightarrow e^{y \log x } \left[ y\frac{d}{dx}\left( \log x \right) + \log x\frac{dy}{dx} \right] + e^{x \log y} \left[ x\frac{d}{dx}\log y + \log y\frac{d}{dx}\left( x \right) \right] = e^\left( x + y \right)\log\left( x + y \right) \frac{d}{dx}\left[ \left( x + y \right)\log\left( x + y \right) \right]\]
\[ \Rightarrow e^{ \log x^y } \left[ y\left( \frac{1}{x} \right) + \log x\frac{dy}{dx} \right] + e^{ \log x } \left[ \frac{x}{y}\frac{dy}{dx} + \log y\left( 1 \right) \right] = e^{{\log }\left( x + y \right)^\left( x + y \right)} \left[ \left( x + y \right)\frac{d}{dx}\log\left( x + y \right) + \log\left( x + y \right)\frac{d}{dx}\left( x + y \right) \right]\]
\[ \Rightarrow x^y \left[ \frac{y}{x} + \log x\frac{dy}{dx} \right] + y^x \left[ \frac{x}{y}\frac{dy}{dx} + \log y \right] = \left( x + y \right)^\left( x + y \right) \left[ \left( x + y \right)\frac{1}{\left( x + y \right)}\frac{d}{dx}\left( x + y \right) + \log\left( x + y \right)\left( 1 + \frac{dy}{dx} \right) \right]\]
\[ \Rightarrow x^y \times \frac{y}{x} + x^y \log x\frac{dy}{dx} + y^x \times \frac{x}{y}\frac{dy}{dx} + y^x \log y = \left( x + y \right)^\left( x + y \right) \left[ 1 \times \left( 1 + \frac{dy}{dx} \right) + \log\left( x + y \right)\left( 1 + \frac{dy}{dx} \right) \right]\]
\[ \Rightarrow x^{y - 1} \times y + x^y \log x\frac{dy}{dx} + y^{x - 1} \times x\frac{dy}{dx} + y^x \log y = \left( x + y \right)^\left( x + y \right) + \left( x + y \right)^\left( x + y \right) \frac{dy}{dx} + \left( x + y \right)^\left( x + y \right) \log\left( x + y \right) + \left( x + y \right)^\left( x + y \right) \log\left( x + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left[ x^y \log x + x y^{x - 1} - \left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\} \right] = \left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\} - x^{y - 1} \times y - y^x \log y\]
\[ \Rightarrow \frac{dy}{dx} = \left[ \frac{\left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\} - y x^{y - 1} - y^x \log y}{x^y \log x + x y^{x - 1} - \left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\}} \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function x cos x ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?