Advertisements
Advertisements
Question
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
Options
\[\frac{n\left( n + 1 \right)}{2}\]
\[\left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
\[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
none of these
Solution
(c) \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
Here,
\[f\left( x \right) = \left( \cos x + i \sin x \right)\left( \cos2x + i \sin2x \right) . . . \left( \cos nx + i \sin nx \right)\]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right) \left( \cos x + i \sin x \right)^2 . . . \left( \cos x + i \sin x \right)^n \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^{1 + 2 + 3 . . . . . . . . . . . n} \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^\frac{n\left( n + 1 \right)}{2} \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^a \left[ \text { where a } = \frac{n\left( n + 1 \right)}{2} \right]\]
\[ \Rightarrow f\left( x \right) = \left( \cos ax + i \sin ax \right) . . . \left( 1 \right)\]
\[ \Rightarrow f\left( 1 \right) = \left( \cos a + i \sin a \right)\]
\[ \Rightarrow 1 = \left( \cos a + i \sin a \right) . . . \left( 2 \right) \left[ \because f\left( 1 \right) = 1 \right]\]
\[\text { Differentiating eqn } . \left( 1 \right),\text { we get }, \]
\[f'\left( x \right) = a\left( - \sin ax + i \cos ax \right)\]
\[ \Rightarrow f''\left( x \right) = a^2 \left( - \cos ax - i \sin ax \right)\]
\[ \Rightarrow f''\left( x \right) = - a^2 \left( \cos ax + i \sin ax \right)\]
\[ \Rightarrow f''\left( x \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos ax + i \sin ax \right)\]
\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos a + i \sin a \right)\]
\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left[ \text{ Using } \left( 2 \right) \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles log cos x ?
Differentiate the following functions from first principles x2ex ?
Differentiate etan x ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = a + bx2, a, b arbitrary constants, then
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.