English

If F(X) = (Cos X + I Sin X) (Cos 2x + I Sin 2x) (Cos 3x + I Sin 3x) ...... (Cos Nx + I Sin Nx) and F(1) = 1, Then F'' (1) is Equal to - Mathematics

Advertisements
Advertisements

Question

If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 

Options

  • \[\frac{n\left( n + 1 \right)}{2}\]

  • \[\left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

  • \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

  • none of these

MCQ

Solution

(c)  \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

Here, 

\[f\left( x \right) = \left( \cos x + i \sin x \right)\left( \cos2x + i \sin2x \right) . . . \left( \cos nx + i \sin nx \right)\]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right) \left( \cos x + i \sin x \right)^2 . . . \left( \cos x + i \sin x \right)^n \]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^{1 + 2 + 3 . . . . . . . . . . . n} \]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^\frac{n\left( n + 1 \right)}{2} \]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^a \left[ \text { where a } = \frac{n\left( n + 1 \right)}{2} \right]\]

\[ \Rightarrow f\left( x \right) = \left( \cos ax + i \sin ax \right) . . . \left( 1 \right)\]

\[ \Rightarrow f\left( 1 \right) = \left( \cos a + i \sin a \right)\]

\[ \Rightarrow 1 = \left( \cos a + i \sin a \right) . . . \left( 2 \right) \left[ \because f\left( 1 \right) = 1 \right]\]

\[\text { Differentiating eqn } . \left( 1 \right),\text {  we get }, \]

\[f'\left( x \right) = a\left( - \sin ax + i \cos ax \right)\]

\[ \Rightarrow f''\left( x \right) = a^2 \left( - \cos ax - i \sin ax \right)\]

\[ \Rightarrow f''\left( x \right) = - a^2 \left( \cos ax + i \sin ax \right)\]

\[ \Rightarrow f''\left( x \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos ax + i \sin ax \right)\]

\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos a + i \sin a \right)\]

\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left[ \text{ Using } \left( 2 \right) \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 7 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles log cos x ?


Differentiate the following functions from first principles x2ex ?


Differentiate etan x ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = a + bx2, a, b arbitrary constants, then

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×