Advertisements
Advertisements
Question
If y = a + bx2, a, b arbitrary constants, then
Options
\[\frac{d^2 y}{d x^2} = 2xy\]
\[x\frac{d^2 y}{d x^2} = y_1\]
\[x\frac{d^2 y}{d x^2} - \frac{dy}{dx} + y = 0\]
\[x\frac{d^2 y}{d x^2} = 2 xy\]
Solution
(b) \[x\frac{d^2 y}{d x^2} = y_1\]
Here,
\[y = a + b x^2 \]
\[ \Rightarrow y_1 = 2bx\]
\[ \Rightarrow y_2 = 2b\]
\[\text { Multiplying by x on both sides we get,} \]
\[ x y_2 = 2bx = y_1 \]
\[ \Rightarrow x\frac{d^2 y}{d x^2} = y_1\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
Differential coefficient of sec(tan−1 x) is ______.
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
f(x) = xx has a stationary point at ______.