Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Solution
\[\text { Let, u }= \sin^{- 1} \left( 2x\sqrt{1 - x^2} \right)\]
\[ \text { Put x } = \sin\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta \cos\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { And, } \]
\[\text { Let, v } = se c^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\sqrt{1 - \sin^2 \theta}} \right) \]
\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\cos\theta} \right) \]
\[ \Rightarrow v = se c^{- 1} \left( sec\theta \right) \]
\[ \Rightarrow v = \cos^{- 1} \left( \frac{1}{\frac{1}{\cos\theta}} \right) \left[ \text { Since }, se c^{- 1} x = \cos^{- 1} \left( \frac{1}{x} \right) \right]\]
\[ \Rightarrow v = \cos^{- 1} \left( \cos\theta \right) . . . \left( ii \right)\]
\[\text { Here }, \]
\[ x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \sin\theta \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \theta \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = 2\theta ........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]
\[\text { Let, u }= 2 \sin^{- 1} x .........\left[ \text { Since,} x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = 2\left( \frac{1}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text { And, from equation } \left( ii \right), \]
\[v = \theta \left[ \text{ Since,} \cos^{- 1} \left( \cos\theta \right) = \theta, \text { if } \theta \in \left[ 0, \pi \right] \right]\]
\[ \Rightarrow v = \sin^{- 1} x \left[ \text { Since }, x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text {dividing equation } \left( iii \right) by \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{1}\]
\[ \therefore \frac{du}{dv} = 2\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles x2ex ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
f(x) = 3x2 + 6x + 8, x ∈ R
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.