English

Differentiate Sin 2 { Log ( 2 X + 3 ) } ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?

Solution

\[\text{Let } y = \sin^2 \left[ \log\left( 2x + 3 \right) \right]\]

\[\Rightarrow \frac{d y}{d x} = \frac{d}{dx}\left[ \sin^2 \left\{ \log\left( 2x + 3 \right) \right\} \right]\]

\[ = 2 \sin\left\{ \log\left( 2x + 3 \right) \right\}\frac{d}{dx}\sin\left\{ \log\left( 2x + 3 \right) \right\} \left[ \text{Using chain rule} \right]\]

\[ = 2\sin\left\{ \log\left( 2x + 3 \right) \right\} \cos\left\{ \log\left( 2x + 3 \right) \right\}\frac{d}{dx}\log\left( 2x + 3 \right)\]

\[ = \sin\left\{ 2\log\left( 2x + 3 \right) \right\} \times \frac{1}{\left( 2x + 3 \right)}\frac{d}{dx}\left( 2x + 3 \right) \left[ \because 2\sin A \cos A = \sin2A \right]\]

\[ = \sin\left\{ 2\log\left( 2x + 3 \right) \right\}\left( \frac{2}{\left( 2x + 3 \right)} \right)\]

\[So, \frac{d}{dx}\left[ \sin^2 \left\{ \log\left( 2x + 3 \right) \right\} \right] = \sin\left\{ 2 \log\left( 2x + 3 \right) \right\}\left( \frac{2}{\left( 2x + 3 \right)} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 43 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate etan x ?


Differentiate tan 5x° ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If y = etan x, then (cos2 x)y2 =


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×