English

If Y = Sin − 1 ( 1 − X 2 1 + X 2 ) , Then D Y D X = - Mathematics

Advertisements
Advertisements

Question

If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .

Options

  • \[- \frac{2}{1 + x^2}\]

  • \[\frac{2}{1 + x^2}\]

  • \[\frac{1}{2 - x^2}\]

  • \[\frac{2}{2 - x^2}\]

MCQ

Solution

\[- \frac{2}{1 + x^2}\]

 

\[\text { Let y } = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]
\[\text { Differentiating with respect to x using chain rule, we get }, \]
\[\frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{1 - x^2}{1 + x^2} \right)^2}}\frac{d}{dx}\left( \frac{1 - x^2}{1 + x^2} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x^2 \right)}{\sqrt{\left( 1 + x^2 \right)^2 - \left( 1 - x^2 \right)^2}}\left[ \frac{\left( 1 + x^2 \right)\frac{d}{dx}\left( 1 - x^2 \right) - \left( 1 - x^2 \right)\frac{d}{dx}\left( 1 + x^2 \right)}{\left( 1 + x^2 \right)^2} \right] ..............\left[ \text { using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x^2 \right)}{\sqrt{\left( 1 + x^2 \right)^2 - \left( 1 - x^2 \right)^2}}\left[ \frac{\left( 1 + x^2 \right)\left( - 2x \right) - \left( 1 - x^2 \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x^2 \right)}{2x}\left[ \frac{- 2x - 2 x^3 - 2x + 2 x^3}{\left( 1 + x^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 4x}{2x\left( 1 + x^2 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2}{1 + x^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.10 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.10 | Q 10 | Page 120

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles ecos x.


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function tan−1 x ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×