Advertisements
Advertisements
प्रश्न
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
पर्याय
\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]
\[\frac{y^2}{x^2}\sqrt{\frac{1 - y^6}{1 + x^6}}\]
\[\frac{x^2}{y^2}\sqrt{\frac{1 - x^6}{1 - y^6}}\]
none of these
उत्तर
\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]
\[\text { We have }, \sqrt{1 - x^6} + \sqrt{1 - y^6} = a\left( x^3 - y^3 \right)\]
\[\text { Putting } x^3 = \sin A \text { and }y^3 = \sin B\]
\[ \Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow \cos A + \cos B = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) = 2a \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\]
\[ \Rightarrow \cot\left( \frac{A - B}{2} \right) = a\]
\[ \Rightarrow \frac{A - B}{2} = \cot^{- 1} \left( a \right)\]
\[ \Rightarrow A - B = 2 \cot^{- 1} \left( a \right)\]
\[ \Rightarrow \sin^{- 1} x^3 - \sin^{- 1} y^3 = 2 \cot^{- 1} \left( a \right)\]
\[\Rightarrow \frac{1}{\sqrt{1 - x^6}} \times \frac{d}{dx}\left( x^3 \right) - \frac{1}{\sqrt{1 - y^6}} \times \frac{d}{dx}\left( y^3 \right) = 0\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^6}} \times 3 x^2 - \frac{1}{\sqrt{1 - y^6}} \times 3 y^2 \times \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2}{y^2}\sqrt{\frac{1 - y^6}{1 - x^6}}\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate sin (3x + 5) ?
Differentiate `2^(x^3)` ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
Find the second order derivatives of the following function ex sin 5x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]