Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
उत्तर
\[\text{ We have }, y^3 - 3x y^2 = x^3 + 3 x^2 y\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left( y^3 \right) - \frac{d}{dx}\left( 3x y^2 \right) = \frac{d}{dx}\left( x^3 \right) + \frac{d}{dx}\left( 3 x^2 y \right)\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 3\left[ x\frac{d}{dx}\left( y^2 \right) + y^2 \frac{d}{dx}\left( x \right) \right] = 3 x^2 + 3\left[ x^2 \frac{d}{dx}\left( y \right) + y\frac{d}{dx}\left( x^2 \right) \right] \left[ \text{ Using product rule } \right]\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 3\left[ x\left( 2y \right)\frac{d y}{d x} + y^2 \right] = 3 x^2 + 3\left[ x^2 \frac{d y}{d x} + y\left( 2x \right) \right]\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 6xy\frac{d y}{d x} - 3 y^2 = 3 x^2 + 3 x^2 \frac{d y}{d x} + 6xy\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 6xy\frac{d y}{d x} - 3 x^2 \frac{d y}{d x} = 3 x^2 + 6xy + 3 y^2 \]
\[ \Rightarrow 3\frac{d y}{d x}\left( y^2 - 2xy - x^2 \right) = 3\left( x^2 + 2xy + y^2 \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{3 \left( x + y \right)^2}{3\left( y^2 - 2xy - x^2 \right)}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{\left( x + y \right)^2}{y^2 - 2xy - x^2}\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate tan2 x ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function tan−1 x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.