मराठी

Differentiate Sin − 1 ( 4 X √ 1 − 4 X 2 ) with Respect to √ 1 − 4 X 2 , If X ∈ ( 1 2 √ 2 , 1 2 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?

बेरीज

उत्तर

\[\text { Let, u } = \sin^{- 1} \left( 4x\sqrt{1 - 4 x^2} \right)\]
\[ \text { put }2x = \cos\theta\]
\[ u = \sin^{- 1} \left( 2 \times \cos\theta\sqrt{1 - \cos^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\cos\theta \sin\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin 2\theta \right) . . . \left( i \right)\]
\[\text {  Let, v }= \sqrt{1 - 4 x^2} . . . \left( ii \right)\]
\[\text { Here }, \]
\[ x \in \left( \frac{1}{2\sqrt{2}}, \frac{1}{2} \right)\]
\[ \Rightarrow 2x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \cos\theta \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \theta \in \left( 0, \frac{\pi}{4} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = 2\theta ..........\left[ \text {Since }, \sin^{- 1} \left( sin\theta \right) = \theta , \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = 2 \cos^{- 1} \left( 2x \right) ........\left[ \text { Since, } 2x = \cos\theta \right]\]

Differentiate it with respect to x,

\[\frac{du}{dx} = 2\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[\frac{du}{dx} = \frac{- 2}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]
\[\frac{du}{dx} = \frac{- 4}{\sqrt{1 - 4 x^2}} . . . \left( iii \right)\]
\[\text { Differentiating equation } \left( ii \right) \text { with respect to x,} \]
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\frac{d}{dx}\left( 1 - 4 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\left( - 8x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right)\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{- 4}{\sqrt{1 - 4 x^2}} \times \frac{\sqrt{1 - 4 x^2}}{- 4x}\]
\[ \therefore \frac{du}{dv} = \frac{1}{x}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.08 [पृष्ठ ११२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.08 | Q 5.2 | पृष्ठ ११२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function x3 log ?


Find the second order derivatives of the following function x cos x ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = etan x, then (cos2 x)y2 =


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×