मराठी

Differentiate Sin − 1 ( X + √ 1 − X 2 √ 2 ) , − 1 < X < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?

बेरीज

उत्तर

\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right\}\]

\[\text{ putting } x = \sin\theta\]

\[ \therefore y = \sin^{- 1} \left( \frac{\sin\theta + \sqrt{1 - \sin^2 \theta}}{\sqrt{2}} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left( \frac{\sin\theta + \cos\theta}{\sqrt{2}} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta\left( \frac{1}{\sqrt{2}} \right) + \cos\theta\left( \frac{1}{\sqrt{2}} \right) \right\}\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta \cos\frac{\pi}{4} + \cos\theta \sin\frac{\pi}{4} \right\}\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \theta + \frac{\pi}{4} \right) \right\} . . . . . \left( 1 \right)\]

\[\text{ Here }, - 1 < x < 1\]

\[ \Rightarrow - 1 < \sin\theta < 1 \]

\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2} \]

\[ \Rightarrow \left( - \frac{\pi}{2} + \frac{\pi}{4} \right) < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]

\[ \Rightarrow - \frac{\pi}{4} < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]

\[\text{ So, from } \left( 1 \right), \]

\[ y = \theta + \frac{\pi}{4} ..........\left[ \text{ Since }, \sin^{- 1} \left( \sin\alpha \right) = \alpha, \text{ if }\alpha \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right] \]

\[ \Rightarrow y = \sin^{- 1} x + \frac{\pi}{4} \]

\[\text{ Differentiating it with respect to x }, \]

\[ \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}} + 0\]

\[ \therefore \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.03 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.03 | Q 14 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles e3x.


Differentiate \[3^{x \log x}\] ?


Differentiate (log sin x)?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×