मराठी

If Y = Cos − 1 ( 2 X ) + 2 Cos − 1 √ 1 − 4 X 2 , 0 < X < 1 2 , Find D Y D X . ? - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?

बेरीज

उत्तर

\[\text{ Here, y }= \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}\]

\[\text{ Put 2x  }= \cos\theta\]

\[ \therefore y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]

\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left( \sin\theta \right)\]

\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] . . . \left( i \right)\]

\[\text{Here}, 0 < x < \frac{1}{2}\]

\[ \Rightarrow 0 < 2x < 1\]

\[ \Rightarrow 0 < \cos\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[\text{and}\]

\[ \Rightarrow 0 > - \theta > - \frac{\pi}{2}\]

\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - \theta \right) > 0\]

\[ \Rightarrow 0 < \left( \frac{\pi}{2} - \theta \right) < \frac{\pi}{2}\]

\[\text{ So, from equation} \left( i \right), \]

\[ y = \theta + 2\left( \frac{\pi}{2} - \theta \right) .......\left[ Since, \cos^{- 1} \left( \cos\left( \theta \right) \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow y = + \pi - 2\theta\]

\[ \Rightarrow y = \pi - \theta\]

\[ \Rightarrow y = \pi - \cos^{- 1} \left( 2x \right) ........\left[ \text{Since}, 2x = cos\theta \right]\]

Differentiate it with respect to x using chain rule,

\[\frac{d y}{d x} = 0 - \left[ \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right]\frac{d}{dx}\left( 2x \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{1}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]

\[ \therefore \frac{d y}{d x} = \frac{2}{\sqrt{1 - 4 x^2}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.03 | Q 42 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function x3 log ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×