मराठी

If X = 10 ( T − Sin T ) , Y = 12 ( 1 − Cos T ) , Find D Y D X . ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 

बेरीज

उत्तर

\[\text { We have, x  }= 10\left( t - \sin t \right) \text { and y } = 12\left( 1 - \cos t \right)\]

\[ \Rightarrow \frac{dx}{dt} = \frac{d}{dt}\left[ 10\left( t - \sin t \right) \right] \text { and }\frac{dy}{dt} = \frac{d}{dt}\left[ 12\left( 1 - \cos t \right) \right]\]

\[ \Rightarrow \frac{dx}{dt} = 10\frac{d}{dt}\left( t - \sin t \right) \text { and } \frac{dy}{dt} = 12\frac{d}{dt}\left( 1 - \cos t \right)\]
\[ \Rightarrow \frac{dx}{dt} = 10\left( 1 - \cos t \right) \text{ and } \frac{dy}{dt} = 12\left[ 0 - \left( - \sin t \right) \right] = 12 \sin t\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{12 \sin t}{10\left( 1 - \cos t \right)}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{12 \times 2\sin\frac{t}{2}\cos\frac{t}{2}}{10 \times 2 \sin^2 \frac{t}{2}}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{6}{5}\cot\frac{t}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.07 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.07 | Q 22 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles x2ex ?


Differentiate tan 5x° ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( 1 + \cos x \right)^x\] ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function x3 log ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]

\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×