हिंदी

If Y = 3 Cos (Log X) + 4 Sin (Log X), Prove That X2y2 + Xy1 + Y = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?

उत्तर

Here,

\[y = 3 \cos\left( \log x \right) + 4 \sin\left( \log x \right)\]

\[\text { Differentiating w . r . t . x, we get }\]

\[ y_1 = - 3\sin\left( \log x \right) \times \frac{1}{x} + 4 \cos\left( \log x \right) \times \frac{1}{x}\]

\[ = \frac{- 3\sin\left( \log x \right) + 4\cos\left( \log x \right)}{x}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[ y_2 = \frac{\left( \frac{- 3\cos\left( \log x \right)}{x} - \frac{4\sin\left( \log x \right)}{x} \right) \times x - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right) - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right) - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right)}{x^2} - \frac{\left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- \left\{ 3\cos\left( \log x \right) + 4\sin\left( \log x \right) \right\}}{x^2} - \frac{\left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- y}{x^2} - \frac{y_1}{x}\]

\[ \Rightarrow x^2 y_2 = - y - x y_1 \]

\[ \Rightarrow x^2 y_2 + y + x y_1 = 0\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 22 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate tan 5x° ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function x cos x ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×