मराठी

If F ( X ) = Log { U ( X ) V ( X ) } , U ( 1 ) = V ( 1 ) and U ′ ( 1 ) = V ′ ( 1 ) = 2 , Then Find the Value of F' (1) ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?

बेरीज

उत्तर

\[\text{ We have, }f\left( x \right) = \log\left\{ \frac{u\left( x \right)}{v\left( x \right)} \right\}\]

\[\text{ and,} \]

\[ u\left( 1 \right) = v\left( 1 \right) , u'\left( 1 \right) = v'\left( 1 \right) = 2 ....... \left( \text{i} \right)\]

\[\Rightarrow f'\left( x \right) = \frac{d}{dx}\left[ \log\left\{ \frac{u\left( x \right)}{v\left( x \right)} \right\} \right]\]

\[ \Rightarrow f'\left( x \right) = \frac{1}{\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]} \times \frac{d}{dx}\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]\]

\[ \Rightarrow f'\left( x \right) = \frac{v\left( x \right)}{u\left( x \right)} \times \left[ \frac{v\left( x \right)\frac{d}{dx}\left\{ u\left( x \right) \right\} - u\left( x \right)\frac{d}{dx}\left\{ v\left( x \right) \right\}}{\left\{ v\left( x \right) \right\}^2} \right] \]

\[ \Rightarrow f'\left( x \right) = \frac{v\left( x \right)}{u\left( x \right)} \times \left[ \frac{v\left( x \right) \times u'\left( x \right) - u\left( x \right) \times v'\left( x \right)}{\left\{ v\left( x \right) \right\}^2} \right]\]

\[\text{ Putting x = 1, we get }, \]

\[f'\left( 1 \right) = \frac{v\left( 1 \right)}{u\left( 1 \right)} \times \left[ \frac{v\left( 1 \right) \times u'\left( 1 \right) - u\left( 1 \right) \times v'\left( 1 \right)}{\left\{ v\left( 1 \right) \right\}^2} \right]\]

\[ \Rightarrow f'\left( 1 \right) = 1 \times \left[ \frac{u\left( 1 \right) \times 2 - u\left( 1 \right) \times 2}{\left\{ u\left( 1 \right) \right\}^2} \right] .........\left[ \text{ Using eqn } \left( \text{i} \right) \right]\]

\[ \Rightarrow f'\left( 1 \right) = \left[ \frac{0}{\left\{ u\left( 1 \right) \right\}^2} \right] \]

\[ \Rightarrow f'\left( 1 \right) = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.09 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.09 | Q 24 | पृष्ठ ११८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


Differential coefficient of sec(tan−1 x) is ______.


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×