Advertisements
Advertisements
प्रश्न
Differentiate \[\left( \log x \right)^{ \log x }\] ?
उत्तर
\[\text{ Let y} = \left( \log x \right)^{\log x} . . . . \left( i \right)\]
\[\text{Taking log on both sides}, \]
\[\log y = \log \left( \log x \right)^{\log x} \]
\[ \Rightarrow \log y = \log x \log \left( \log x \right) \]
\[\text{ Differentiating both side with respect to x }, \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left( \log x \right)\frac{d}{dx}\log x + \log x \frac{d}{dx}\log\left( \log x \right) \]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \log\left( \log x \right)\frac{1}{x} + \log x\frac{1}{\log x}\frac{d}{dx}\left( \log x \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{1}{x}\log\left( \log x \right) + \frac{1}{x} \right]\]
\[ \therefore \frac{dy}{dx} = \left( \log x \right)^{\log x} \left[ \frac{1 + \log\left( {\log x} \right)}{x} \right] \left[ \text{ using equation } \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e3x.
Differentiate \[3^{e^x}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
Find the second order derivatives of the following function x3 log x ?
Find the second order derivatives of the following function tan−1 x ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = etan x, then (cos2 x)y2 =
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.