Advertisements
Advertisements
Question
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
Solution
Here,
\[y = e^{\tan^{- 1} x }\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = e^{\tan^{- 1} x } \times \frac{1}{1 + x^2}\]
\[\text { Differentiating again w . r . t . x, we get}\]
\[\frac{d^2 y}{d x^2} = e^{\tan^{- 1} x} \frac{1}{\left( 1 + x^2 \right)^2} + e^{\tan^{- 1} x} \frac{- 2x}{\left( 1 + x^2 \right)^2}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = \frac{e^{\tan^{- 1} x}}{\left( 1 + x^2 \right)} - \frac{2x e^{\tan^{- 1} x}}{\left( 1 + x^2 \right)}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = \frac{d y}{d x} - 2x\frac{d y}{d x}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{d y}{d x} = 0\]
Hence proved
APPEARS IN
RELATED QUESTIONS
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles e−x.
Differentiate tan 5x° ?
Differentiate `2^(x^3)` ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate (log x)x with respect to log x ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
Find the second order derivatives of the following function x3 + tan x ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = a + bx2, a, b arbitrary constants, then
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.