Advertisements
Advertisements
Question
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Solution
\[\text { We have, x } = \frac{\sin^3 t}{\sqrt{\cos2t}} \text { and y } = \frac{\cos^3 t}{\sqrt{\cos2t}}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{d}{dt}\left[ \frac{\sin^3 t}{\sqrt{\cos2t}} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\cos2t}\frac{d}{dt}\left( \sin^3 t \right) - \sin^3 t\frac{d}{dt}\sqrt{\cos2t}}{\cos2t} ............\left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\cos2t}\left( 3 \sin^2 t \right)\frac{d}{dt}\left( \sin t \right) - \sin^3 t \times \frac{1}{2\sqrt{\cos2t}}\frac{d}{dt}\left( \cos 2t \right)}{\cos2t} \]
\[ \Rightarrow \frac{dx}{dt} = \frac{3\sqrt{\cos2t}\left( \sin^2 t \cos t \right) - \frac{\sin^3 t}{2\sqrt{\cos2t}}\left( - 2 \sin2t \right)}{\cos 2t}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}{\cos2t\sqrt{\cos2t}}\]
\[Now, \frac{dy}{dt} = \frac{d}{dt}\left[ \frac{\cos^3 t}{\sqrt{\cos2t}} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{\sqrt{\cos2t}\frac{d}{dt}\left( \cos^3 t \right) - \cos^3 t\frac{d}{dt}\sqrt{\cos2t}}{\cos2t} ............\left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{\sqrt{\cos2t}\left( 3 \cos^2 t \right)\frac{d}{dt}\left( \cos t \right) - \cos^3 t \times \frac{1}{2\sqrt{\cos2t}}\frac{d}{dt}\left( \cos 2t \right)}{\cos2t} \]
\[ \Rightarrow \frac{dy}{dt} = \frac{3\sqrt{\cos2t} \cos^2 t \left( - \sin t \right) - \frac{\cos^3 t}{2\sqrt{\cos2t}}\left( - 2 \sin2t \right)}{\cos 2t}\]
\[ \Rightarrow \frac{dy}{dt} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{\cos2t\sqrt{\cos2t}}\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{\cos2t\sqrt{\cos2t}} \times \frac{\cos2t\sqrt{\cos2t}}{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin t \cos t\left[ - 3\cos2t \cos t + 2 \cos^3 t \right]}{\sin t \cos t\left[ 3\cos2t \sin t + 2 \sin^3 t \right]}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left[ - 3\left( 2 \cos^2 t - 1 \right)\cos t + 2 \cos^3 t \right]}{\left[ 3\left( 1 - 2 \sin^2 t \right)\sin t + 2 \sin^3 t \right]} ............[{\cos2t = 2 \cos^2 t - 1}, {\cos2t = 1 - 2 \sin^2 t}]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 4 \cos^3 t + 3\cos t}{3\ sint - 4 \sin^3 t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \cos3t}{\sin3t} ..............[{\cos3t = 4 \cos^3 t - 3\cos t}, {\sin3t = 3\sin t - 4 \sin^3 t}]\]
\[ \therefore \frac{dy}{dx} = - \cot3t\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles log cos x ?
Differentiate tan (x° + 45°) ?
Differentiate sin2 (2x + 1) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Differentiate x2 with respect to x3
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function ex sin 5x ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y = etan x, then (cos2 x)y2 =
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.