English

Differentiate Tan − 1 ( 4 X 1 − 4 X 2 ) , − 1 2 < X < 1 2 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?

Sum

Solution

\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{4x}{1 - 4 x^2} \right\}\]

\[\text{ put 2x } = \tan\theta\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{2 \tan\theta}{1 - \tan^2 \theta} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left( \tan2\theta \right) . . . \left( i \right)\]

\[\text{ Here }, - \frac{1}{2} < x < \frac{1}{2}\]

\[ \Rightarrow - 1 < 2x < 1\]

\[ \Rightarrow - 1 < \tan\theta < 1\]

\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]

\[ \Rightarrow - \frac{\pi}{2} < 2\theta < \frac{\pi}{2}\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = 2\theta ............\left[ \text{ Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow y = 2 \tan^{- 1} \left( 2x \right) ...........\left[ \text{ Since }, 2x = \tan\theta \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[\frac{d y}{d x} = 2\left( \frac{1}{1 + \left( 2x \right)^2} \right)\frac{d}{dx}\left( 2x \right)\]

\[ \Rightarrow \frac{d y}{d x} = 2\left( \frac{1}{1 + 4 x^2} \right) \times 2\]

\[ \therefore \frac{d y}{d x} = \frac{4}{1 + 4 x^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.03 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.03 | Q 16 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles log cos x ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×