English

Differentiate Tan − 1 { X a + √ a 2 − X 2 } , − a < X < a ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?

Sum

Solution

\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}\]

\[\text{ Put x }= a \sin\theta\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a + \sqrt{a^2 - a^2 \sin^2 \theta}} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left( \frac{a \sin\theta}{a + \sqrt{a^2 \left( 1 - \sin^2 \theta \right)}} \right) \]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a + a \cos\theta} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a\left( 1 + \cos\theta \right)} \right\} \]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\sin\theta}{1 + \cos\theta} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left( \tan \frac{\theta}{2} \right) . . . \left( i \right) \]

\[\text{Here }, - a < x < a\]

\[ \Rightarrow - 1 < \frac{x}{a} < 1\]

\[ \Rightarrow - 1 < \sin\theta < 1\]

\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2}\]

\[ \Rightarrow - \frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = \frac{\theta}{2} .......\left[ \text{ Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow y = \frac{1}{2} \sin^{- 1} \left( \frac{x}{a} \right) ..........\left[ \text{ Since }, x = a \sin\theta \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[ \frac{d y}{d x} = \frac{1}{2} \times \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}}\frac{d}{dx}\left( \frac{x}{a} \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{a}{2\sqrt{a^2 - x^2}} \times \left( \frac{1}{a} \right)\]

\[ \therefore \frac{d y}{d x} = \frac{1}{2\sqrt{a^2 - x^2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.03 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.03 | Q 13 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate (log sin x)?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{\sin x}\]  ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


Find the second order derivatives of the following function tan−1 x ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If y = etan x, then (cos2 x)y2 =


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×