English

If X = a (θ + Sin θ), Y = a (1 + Cos θ), Prove that D 2 Y D X 2 = − a Y 2 ? - Mathematics

Advertisements
Advertisements

Question

If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?

Solution

Here,

\[x = a\left( \theta + \sin\theta \right) \text{ and y } = a\left( 1 + \cos\theta \right)\]

\[\text { Differentiating w . r . t . }\theta, \text { we get }\]

\[\frac{d x}{d \theta} = a + a\cos\theta \text { and } \frac{d y}{d \theta} = - a \sin\theta\]

\[ \therefore \frac{d y}{d x} = \frac{- a \sin\theta}{a + a \cos\theta} = \frac{- \sin\theta}{1 + \cos\theta}\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = - \left\{ \frac{\left( 1 + \cos\theta \right)\cos\theta + \sin^2 \theta}{\left( 1 + cos\theta \right)^2} \right\}\frac{d\theta}{dx}\]

\[ = \frac{- \cos\theta - \cos^2 \theta - \sin^2 \theta}{\left( 1 + \cos\theta \right)^2} \times \frac{1}{a + a\cos\theta}\]

\[ = \frac{- \left( 1 + \cos\theta \right)}{a \left( 1 + \cos\theta \right)^3}\]

\[ = \frac{- 1}{a \left( 1 + \cos\theta \right)^2}\]

\[ = \frac{- a}{y^2} \left[ \because y = a\left( 1 + \cos\theta \right) \right]\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.1 | Q 13 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate sin (log x) ?


Differentiate sin2 (2x + 1) ?


Differentiate log7 (2x − 3) ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


Differentiate log (1 + x2) with respect to tan−1 x ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×