Advertisements
Advertisements
Question
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
Solution
\[\text{ We have}, \left( \sin x \right)^y = \left( \cos y \right)^x \]
Taking log on both sides,
\[\log \left( \sin x \right)^y = \log \left( \cos y \right)^x \]
\[ \Rightarrow y \log\left( \sin x \right) = x \log\left( \cos y \right) \]
Differentiating with respect to x,
\[\frac{d}{dx}\left[ y \log \sin x \right] = \frac{d}{dx}\left[ x \log\cos y \right]\]
\[ \Rightarrow y\frac{d}{dx}\left( \log \sin x \right) + \log \sin x\frac{dy}{dx} = x\frac{dy}{dx}\left( \log \cos y \right) + \log \cos y\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow y\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log \sin x\frac{dy}{dx} = \frac{x}{\cos y}\frac{d}{dx}\left( \cos y \right) + \log\cos y\left( 1 \right)\]
\[ \Rightarrow \frac{y}{\sin x}\left( \cos x \right) + \log \sin x\frac{dy}{dx} = \frac{x}{\cos y}\left( - \sin y \right)\frac{dy}{dx} + \log \cos y\]
\[ \Rightarrow y \cot x + \log \sin x\frac{dy}{dx} = - x \tan y\frac{dy}{dx} + \log \cos y\]
\[ \Rightarrow \frac{dy}{dx}\left( \log \sin x + x \tan y \right) = \log \cos y - y \cot x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\log \cos y - y \cot x}{\log \sin x + x \tan y}\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
Find the minimum value of (ax + by), where xy = c2.
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.