English

If X Y = E X − Y , Then D Y D X is - Mathematics

Advertisements
Advertisements

Question

If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .

Options

  • \[\frac{1 + x}{1 + \log x}\]

  • \[\frac{1 - \log x}{1 + \log x}\]

  • not defined

  • \[\frac{\log x}{\left( 1 + \log x \right)^2}\]

MCQ

Solution

\[\frac{\log x}{\left( 1 + \log x \right)^2}\]

 

\[\text{ We have,} x^y = e^{x - y} \]
\[\text{ Taking log on both sides we get }, \]
\[ \Rightarrow y \log x = \left( x - y \right) \log_e e\]
\[ \Rightarrow y \log x = x - y\]
\[ \Rightarrow y \log x + y = x\]
\[ \Rightarrow y\left( 1 + \log x \right) = x\]
\[ \Rightarrow y = \frac{x}{1 + \log x}\]

\[\Rightarrow \frac{dy}{dx} = \frac{\left( 1 + \log x \right) \times 1 - x \times \left( 0 + \frac{1}{x} \right)}{\left( 1 + \log x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1 + \log x - 1}{\left( 1 + \log x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\log x}{\left( 1 + \log x \right)^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.10 [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.10 | Q 7 | Page 119

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles ecos x.


Differentiate sin (3x + 5) ?


Differentiate sin (log x) ?


Differentiate `2^(x^3)` ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×