Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
उत्तर
\[\text { Let, u } = \tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\]
\[\text { Put x }= \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - 1}{\tan\theta + 1} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\theta - \tan\frac{\pi}{4}}{1 + \tan\theta \tan\frac{\pi}{4}} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \theta - \frac{\pi}{4} \right) \right] . . . \left( i \right) \]
\[\text { Here }, - \frac{1}{2} < x < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} < \tan\theta < \frac{1}{2}\]
\[ \Rightarrow - \tan^{- 1} \left( \frac{1}{2} \right) < \theta < \tan^{- 1} \left( \frac{1}{2} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[u = \theta - \frac{\pi}{4} .......\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = \tan^{- 1} x - \frac{\pi}{4} .........\left[ \text { Since, x } = \tan\theta \right]\]
differentiating it with respect to x,
\[\frac{du}{dx} = \frac{1}{1 + x^2} - 0 \]
\[ \Rightarrow \frac{du}{dx} = \frac{1}{1 + x^2} . . . \left( ii \right) \]
\[\text{ And }, \]
\[\text { Let, v } = \sin^{- 1} \left( 3x - 4 x^3 \right)\]
\[\text { Put x } = \sin\theta\]
\[ \Rightarrow v = \sin^{- 1} \left( 3\sin\theta - 4 \sin^3 \theta \right)\]
\[ \Rightarrow v = \sin^{- 1} \left( \sin3\theta \right) . . . \left( iii \right)\]
\[\text { Now }, - \frac{1}{2} < x < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} < \sin\theta < \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{6} < \theta < \frac{\pi}{6}\]
\[\text { So, from equation } \left( iii \right), \]
\[v = 3\theta .........\left[ \text { Since,} \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow v = 3 \sin^{- 1} x .......\left[ \text { Since,} x = \sin\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{3}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{1}{1 + x^2} \times \frac{\sqrt{1 - x^2}}{3}\]
\[ \therefore \frac{du}{dv} = \frac{\sqrt{1 - x^2}}{3\left( 1 + x^2 \right)}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles eax+b.
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.