Advertisements
Advertisements
प्रश्न
Differentiate \[\sin \left( x^x \right)\] ?
उत्तर
\[\text{ Let y }= \sin x^x \]
\[ \Rightarrow \sin^{- 1} y = x^x . . . \left( i \right)\]
\[\text{ Taking log on both sides}, \]
\[\log\left( \sin^{- 1} y \right) = \log x^x \]
\[ \Rightarrow \log\left( \sin^{- 1} y \right) = x \log x \]
\[\text{ Differentiating with respect to x }, \]
\[ \Rightarrow \frac{1}{\sin^{- 1} y}\frac{dy}{dx}\left( \sin^{- 1} y \right) = x\frac{d}{dx}\log x + \log x\frac{d}{dx}x \]
\[ \Rightarrow \frac{1}{\sin^{- 1} y} \times \left( \frac{1}{\sqrt{1 - y^2}} \right)\frac{dy}{dx} = x\left( \frac{1}{x} \right) + \log x\]
\[ \Rightarrow \frac{dy}{dx} = \sin^{- 1} y\sqrt{1 - y^2}\left( 1 + \log x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \sin^{- 1} \left( \sin x^x \right)\sqrt{1 - \left( \sin x^x \right)^2}\left( 1 + \log x \right)\]
\[ \therefore \frac{dy}{dx} = x^x \cos x^x \left( 1 + \log x \right) \left[ \text{ using equation } \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles log cos x ?
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Find the minimum value of (ax + by), where xy = c2.