Advertisements
Advertisements
प्रश्न
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
उत्तर
Here, f(x) = cos2 x + sin x, x ϵ (0, π)
∴ f'(x) = 2 cos x (- sin x) + cos x
= cos x (- 2 sin x + 1)
For maximum / minimum values, f (x) = 0
⇒ cos x (- 2 sin x + 1) = 0
`=> sin x = 1/2 => x = pi/6` and cos x = 0 ⇒ x = `pi/2`
In the interval [0, π], the critical points are x = `pi/6` and x = `pi/2`.
∴ f(0) = cos2 0 + sin 0 = 1
`f(pi/6) = cos^2 pi/6 + sin pi/6`
`= (sqrt3/2)^2 + 1/2`
`= 3/4 + 1/2`
`= (3 + 2)/4 = 5/4`
`f(pi/2) = cos^2 pi/2 + sin pi/2`
= 0 + 1 = 1
Hence, the absolute maximum and minimum value are `5/4` and 1, respectively.
APPEARS IN
संबंधित प्रश्न
Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x).
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = sinx − cos x, 0 < x < 2π
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Prove that the following function do not have maxima or minima:
g(x) = logx
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) =x^3, x in [-2,2]`
What is the maximum value of the function sin x + cos x?
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`
Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.
The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it.
Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.
Divide the number 30 into two parts such that their product is maximum.
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
Determine the maximum and minimum value of the following function.
f(x) = 2x3 – 21x2 + 36x – 20
A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.
Find all the points of local maxima and local minima of the function f(x) = (x - 1)3 (x + 1)2
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.
The maximum value of the function f(x) = `logx/x` is ______.
A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.
The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.
Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.
The minimum value of 2sinx + 2cosx is ______.
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.