हिंदी

For all real values of x, the minimum value of 1-x+x21+x+x2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.

विकल्प

  • 0

  • 1

  • 3

  • `1/3`

MCQ
रिक्त स्थान भरें

उत्तर

For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is `underline(1/3)`.

Explanation:

Let, y = `(1 - x + x^2)/(1 + x = x^2)`

Differentiating both sides with respect to x,

`dy/dx = ((-1 + 2x)(1 + x + x^2) - (1 - x + x^2)(1 + 2x))/((1 + x + x^2)^2)`

`= ((- 1 - x + x^2) + (2x + 2x^2 + 2x^3) - [(1 - x + x^2 + 2x - 2x^2 = 2x^3)])/((1 + x + x^2)^2)`

`= (-1 - x - x^2 + 2x + 2x^2 + 2x^3 - 1 + x - x^2 - 2x + 2x^2 - 2x^3)/((1 + x + x^2)^2)`

`= (-2 + 2x^2)/((1 + x + x^2)^2)`

`= (2 (x^2 - 1))/((1 + x + x^2)^2)`

`= (2(x - 1)(x + 1))/((1 + x + x^2)^2)`

For highest and lowest value, `dy/dx = 0`

`therefore (2(x - 1)(x + 1))/((1 + x + x^2)^2) = 0/1` 

`=>` (x - 1)(x + 1) = 0

`therefore` x = 1, -1

The sign of `dy/dx` at x = 1 changes from negative to positive when the point moves through x = 1.

`therefore` y is minimum at the point x = 1.

Minimum value, f(1) `= (1 - 1 + 1)/(1 + 1 + 1) = 1/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 28 | पृष्ठ २३४

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Prove that the following function do not have maxima or minima:

f(x) = ex


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Find the maximum area of an isosceles triangle inscribed in the ellipse  `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Divide the number 30 into two parts such that their product is maximum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


If x + y = 3 show that the maximum value of x2y is 4.


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `(1/x)^x` is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


Range of projectile will be maximum when angle of projectile is


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


If x + y = 8, then the maximum value of x2y is ______.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×