हिंदी

An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.

योग

उत्तर

Let the side of the square cut off from the corners be x cm.

Therefore, each side of the square box is (18 – 2x) cms and the height is x cms.


Let V be the volume of the box.

V = Area of the base × Height

V = (18 − 2x)2

V = (324 − 72x + 4x2) x

∴ V = 4x3 − 72x2 + 324x

Differentiating w.r.t. x, we get

`(dV)/dx = 12x^2 - 144x + 324`

`therefore (d^2V)/dx^2 = 24x - 144`

For maximum volume, `(dV)/dx = 0`

∴ 12x2 − 144x + 324 = 0

∴ x2 − 12x + 27 = 0

∴ (x − 3) (x − 9) = 0

∴ x − 3 = 0 or x − 9 = 0

∴ x = 3 or x = 9

But x ≠ 9

∴ x = 3

For x = 3

`((d^2V)/dx^2)_(x = 3) = 24(3) - 144 = -72 < 0`

The volume of the box is maximum when x = 3.

∴ Maximum value of the box = (18 − 6)2 (3) 

= 432 cc

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.2: Applications of Derivatives - Long Answers III

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


What is the maximum value of the function sin x + cos x?


Find two numbers whose sum is 24 and whose product is as large as possible.


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


Find the maximum area of an isosceles triangle inscribed in the ellipse  `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


The function f(x) = x log x is minimum at x = ______.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?


If x is real, the minimum value of x2 – 8x + 17 is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find the local minimum value of the function f(x) `= "sin"^4" x + cos"^4 "x", 0 < "x" < pi/2`


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


Divide 20 into two ports, so that their product is maximum.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

A function f(x) is maximum at x = a when f'(a) > 0.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


The minimum value of 2sinx + 2cosx is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Find the maximum and the minimum values of the function f(x) = x2ex.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×