हिंदी

Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area? - Mathematics

Advertisements
Advertisements

प्रश्न

Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?

योग

उत्तर

Let r cm be the radius, h cm be the height, S cm2 be the total surface area and V cm3 be the volume.

Now,

V = πr2h = 100

⇒ `h = 100/(pir^2)` 

and S = 2πr2 + 2πrh

⇒ `S = 2pir^2 + 2pir (100/(pir^2))`

`= 2pir^2 + 200/r`

Differentiate `S = 2pir^2 + 200/r` w.r.t r we get

`(dS)/(dr) = 4pir - 200/r^2`

For maximum / minimum surface area 

`(dS)/(dr) = 0`

⇒ `4pir - 200/r^2 = 0`

⇒ `r^3 = 200/ (4pi)`

⇒ `r = (50/pi)^(1//3)`

`(d^2S)/(dr^2) = 4pi + (200 xx 2)/r^3`

`= 4pi + 400/r^3`

and `((d^2S)/(dr^2))_(r = (50/pi)^(1/3))`

`= 4pi + 400/ (50/pi) > 0`

∴ S has a minimum value at

`r = (50/pi)^(1/3)`

When `r = (50/pi)^(1/3)` cm, then

`h = 100/(pi(50/pi)^(2//3)) `

`h = 100/((50)^(2//3) pi^(1//3))`

`= (50xx2)/ ((50)^(2//3) pi ^(1//3))`

`= 2 (50/pi)^(1//3)` cm.

When r `(50/pi)^(1/3)` and h = 2 `(50/pi)^(1/3)` then S will be minimum.

Hence, the total surface area will be minimum.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 21 | पृष्ठ २३३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Show that among rectangles of given area, the square has least perimeter.


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


If f(x) = x.log.x then its maximum value is ______.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?


If x is real, the minimum value of x2 – 8x + 17 is ______.


The maximum value of `(1/x)^x` is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


If y = x3 + x2 + x + 1, then y ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The function `"f"("x") = "x" + 4/"x"` has ____________.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×