हिंदी

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

योग

उत्तर

Let ABCD be a rectangle inscribed in the given circle of radius r having centre at O.

Let one side of the rectangle be c then the  other side

`= sqrt((2r)^2 - x^2)`

`= sqrt(4r^2 - x^2)`

(∴ ∠ADC = ∠ABC = 90°; an angle in the semi-circle).

Let A be the corresponding area of the rectangle.

`A = xsqrt(4r^2 - x^2), 0 < x < 2r`

⇒ `(dA)/dx = (x(-2x))/(2 sqrt(4r^2 - x^2)) + sqrt(4r^2 - x^2)`

`= (2(2r^2 - x^2))/sqrt(4r^2 - x^2)`

For maximum / minimum area

`(dA)/dx = (2r^2 - x^2)/(sqrt(4r^2 - x^2)) = 0`

⇒ `x = sqrt2r`          ...(∵ 0 < x < 2r) 

Now, 

`(d^2A)/dx^2 = (sqrt(4r^2 - x^2) (-4x) - (4r^2 - 2x^2) (1xx(-2x))/(2sqrt(4r^2 - x^2)))/((4r^2 - x^2))`

`= ((4r^2 - x^2) (-4x) + (4r^2 - 2x^2) x)/((4r^2 - x^2)^(3//2))`

`= (-12r^2x + 2x^3)/(4r^2 - x^2)^(3//2)`

`((d^2A)/dx^2)_(x = sqrt(2r))`

`= (-12r^2 (sqrt (2r)) + 2 (sqrt (2r))^3)/((2r^2)^(3//2)`

`= (4sqrt(2r^3) - 12 sqrt (2r^3))/(2 sqrt(2r^3))`

= 2 - 6 < 0

∴ Area is maximum at x = `sqrt(2r)`

∴ length of rectangle is `sqrt(2r)`

width of rectangle is `sqrt (4r^2 - x^2) = sqrt (2r)`

Hence the rectangle is a square of side `sqrt (2r)` for maximum area.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 19 | पृष्ठ २३३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

g(x) = logx


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : f(x) = `logx/x`


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


Find the local minimum value of the function f(x) `= "sin"^4" x + cos"^4 "x", 0 < "x" < pi/2`


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


The maximum value of the function f(x) = `logx/x` is ______.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×