Advertisements
Advertisements
Question
The function f(x) = x2 e−x is monotonic increasing when
Options
x ∈ R − [0, 2]
0 < x < 2
2 < x < ∞
x < 0
Solution
0 < x < 2
\[f\left( x \right) = x^2 e^{- x} \]
\[f'\left( x \right) = 2x e^{- x} - x^2 e^{- x} \]
\[ = e^{- x} x\left( 2 - x \right)\]
\[\text { For f(x) to be monotonic increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow e^{- x} x\left( 2 - x \right) > 0 \left[ \because e^{- x} > 0 \right]\]
\[ \Rightarrow x\left( 2 - x \right) > 0\]
\[ \Rightarrow x\left( x - 2 \right) < 0\]
\[ \Rightarrow 0 < x < 2\]
APPEARS IN
RELATED QUESTIONS
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = cot−1 x + x increases in the interval
Function f(x) = x3 − 27x + 5 is monotonically increasing when
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The function f(x) = x3 - 3x is ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f (x) = 2 – 3 x is ____________.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Function given by f(x) = sin x is strictly increasing in.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?