Advertisements
Advertisements
Question
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Solution
x >100
RELATED QUESTIONS
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Function f(x) = cos x − 2 λ x is monotonic decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = 9 - x5 - x7 is decreasing for
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
Which of the following functions is decreasing on `(0, pi/2)`?
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
Function given by f(x) = sin x is strictly increasing in.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?