Advertisements
Advertisements
Question
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Solution
\[Here, \]
\[f\left( x \right) = \cos x\]
\[\text{Domain of cos x is}\left( - \pi, \pi \right).\]
\[ \Rightarrow f'\left( x \right) = - \sin x\]
\[\text{For x} \in \left( - \pi, 0 \right), \sin x < 0 \left[ \because \text{sine function is negative in third and fourth quadrant }\right]\]
\[ \Rightarrow - \sin x > 0\]
\[ \Rightarrow f'\left( x \right) > 0\]
\[So, \text{cos x is increasing in} \left( - \pi, 0 \right) . \]
\[\text{For x} \in \left( 0, \pi \right)),\sin x > 0 \left[ \because \text{sine function is positive in first and second quadrant }\right]\]
\[ \Rightarrow - \sin x < 0\]
\[ \Rightarrow f'\left( x \right) < 0\]
\[\text{So,f(x) is decreasing on}\left( 0, \pi \right).\]
\[\text{Thus,f(x) is neither increasing nor decreasing in}\left( - \pi, \pi \right).\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = loga x is increasing on R, if
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.