Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\]
\[f'\left( x \right) = \frac{1}{\left( 2 + x \right)} - \frac{\left[ \left( 2 + x \right)2 - 2x \right]}{\left( 2 + x \right)^2}\]
\[ = \frac{\left( 2 + x \right) - \left[ 4 + 2x - 2x \right]}{\left( 2 + x \right)^2}\]
\[ = \frac{2 + x - 4}{\left( 2 + x \right)^2}\]
\[ = \frac{\left( x - 2 \right)}{\left( 2 + x \right)^2}, x \neq - 2\]
\[\text{ Here, x = 2 is the critical point}.\]
\[\text { The possible intervals are }\left( - \infty , 2 \right)\text { and }\left( 2, \infty \right). .....(1)\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{\left( x - 2 \right)}{\left( 2 + x \right)^2} > 0\]
\[ \Rightarrow x - 2 > 0, x \neq - 2\]
\[ \Rightarrow x > 2\]
\[ \Rightarrow x \in \left( 2, \infty \right) \left[ \text { From eq. } (1) \right]\]
\[\text{ So,f(x)is increasing on x }\in \left( 2, \infty \right) .\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{\left( x - 2 \right)}{\left( 2 + x \right)^2} < 0\]
\[ \Rightarrow x - 2 < 0, x \neq - 2\]
\[ \Rightarrow x < 2\]
\[ \Rightarrow x \in \left( - \infty , 2 \right) \left[ \text { From eq.} (1) \right]\]
\[\text { So,f(x)is decreasing on x }\in \left( - \infty , 2 \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Function f(x) = cos x − 2 λ x is monotonic decreasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Show that f(x) = x – cos x is increasing for all x.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The function f(x) = 9 - x5 - x7 is decreasing for
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The function f(x) = x3 + 3x is increasing in interval ______.