English

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ? - Mathematics

Advertisements
Advertisements

Question

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?

Solution

Area of an equilateral triangle, `A = sqrt3/4 a^2`

where 

a = Side of an equilateral triangle

Given:

`(da)/(dt)` =2 cm/s

Now,

`(dA)/(dt)=d/dt(sqrt3/4a^2)`

`=sqrt3/4 xx 2 xx a xx(da)/(dt)`

`=(sqrt3a)/2xx(da)/(dt)`

`=(sqrt3a)/2xx2`

`=sqrt3a` cm2/s

`therefore [(dA)/(dt)]_(a=20)=20sqrt3` cm2/s

Hence, the area is increasing at the rate of `20sqrt3` cm2/s when the side of the triangle is 20 cm.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Function f(x) = ax is increasing on R, if


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×