English

Find : ∫(x+3)√(3−4x−x^2) dx - Mathematics

Advertisements
Advertisements

Question

Find : `int(x+3)sqrt(3-4x-x^2dx)`

Solution

`I=int(x+3)sqrt(3-4x-x^2)dx`

Let (x+3)= `Ad/dx(3-4x-x^2)+B `

⇒ x+3=A(-2x-4)+B

⇒ x+3 = -2Ax-4A +B

∴ -2A=1

⇒A =`1/2`

-4A+B=3

⇒ `-4(-1/2)+B=3`

⇒ B =1

`:.I=int[-1/2d/dx(3-4x-x^2)+1]sqrt(3-4x-x^2dx)`

`=1/2intd/dx(3-4x-x^2)sqrt(3-4x-x^2)dx+intsqrt(3-4x-x^2-4+4)dx`

`=1/2((3-4x-x^2)^(3/2)/(3/2))+intsqrt(7-(x+2)^2)dx`

 `=(3-4x-x^2)^(3/2)/3+(x+2)/2sqrt(7-(x+2)^2)+7/2sin^(-1)((x+2)/sqrt7)+C`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 N

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`(log x)^2/x`


Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate `int1/(x(x-1))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×