English

∫exx[x(logx)2+2logx] dx = ______________ - Mathematics and Statistics

Advertisements
Advertisements

Question

`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________

Options

  • ex log x + c

  • ex (log x)2 + c

  • e2x log x + c

  • e2x (log x)2 + c

MCQ
Fill in the Blanks

Solution

ex (log x)2 + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

RELATED QUESTIONS

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int logx/x  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


`int (logx)^2/x dx` = ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×