Advertisements
Advertisements
Question
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
Options
`1/2 log [(2x - 1) + sqrt(x^2 - x - 6)] + "c"`
tan−1 (2x − 1) + c
`log [(x - 1/2) + sqrt(x^2 - x - 6)] + "c"`
`log [(x - 1/2) + sqrt(x^2 + x + 6)] + "c"`
Solution
`int 1/sqrt((x - 3)(x + 2))` dx = `bbunderline(log [(x - 1/2) + sqrt(x^2 - x - 6)] + "c")`.
Explanation:
`int 1/sqrt((x - 3)(x + 2))` dx = `int 1/sqrt(x^2 - x - 6)` dx
= `int 1/sqrt((x - 1/2)^2 - (5/2)^2)` dx
= `log |(x - 1/2) + sqrt((x - 1/2)^2 - ( 5/2)^2)| + c`
= `log |(x - 1/2) + sqrt(x^2 - x - 6)| + c`
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: ∫ |x| dx if x < 0
`int x^2/sqrt(1 - x^6)` dx = ________________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
Write `int cotx dx`.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`